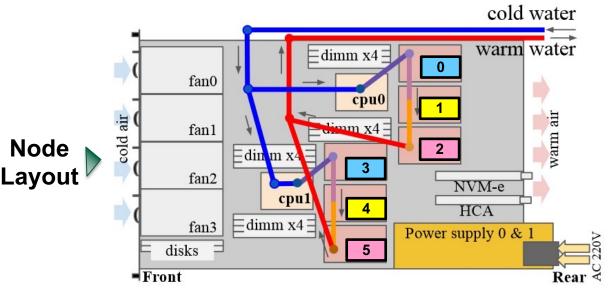
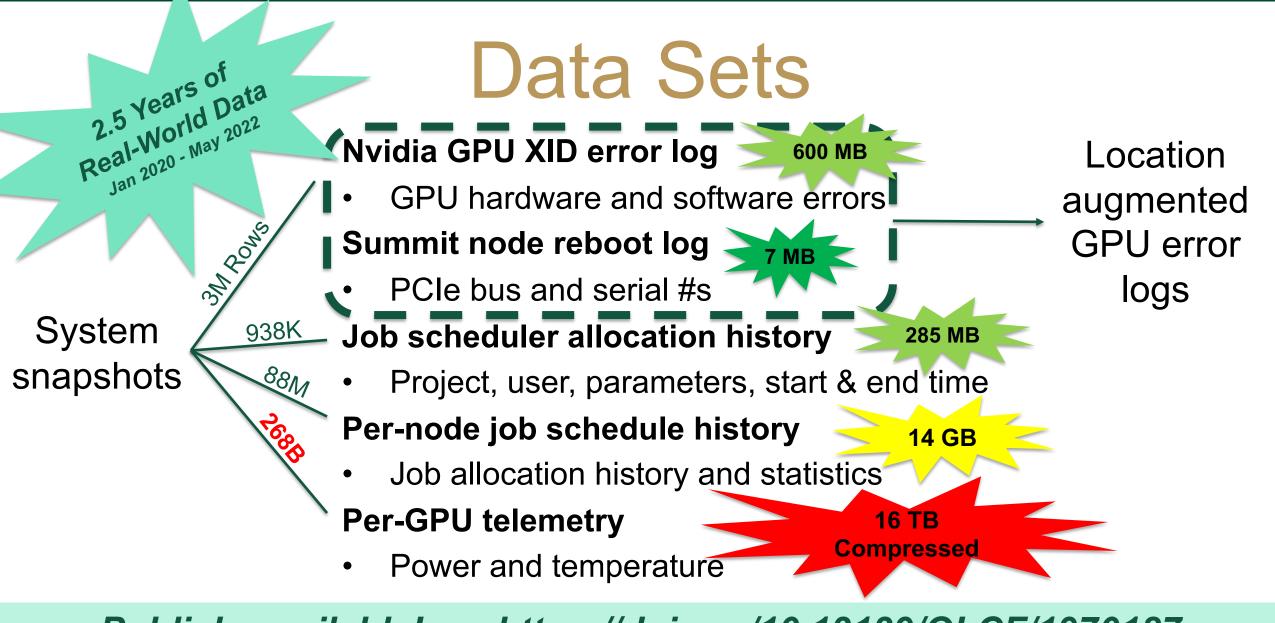
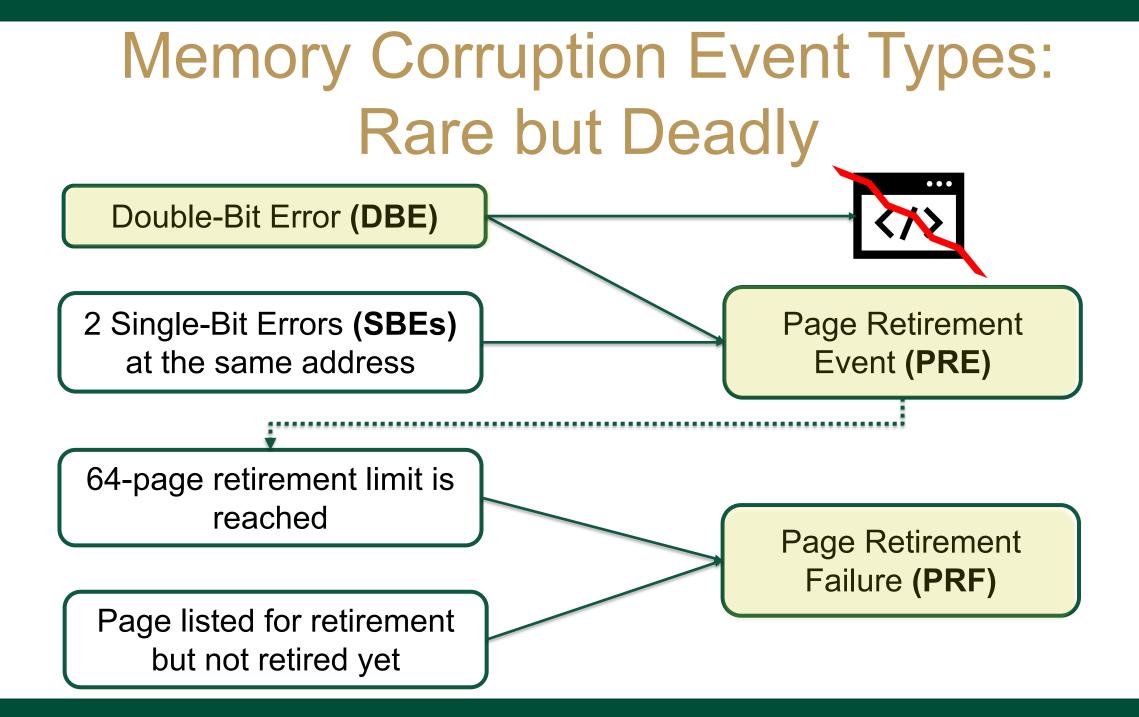

Understanding GPU Memory Corruption at Extreme Scale: The Summit Case Study

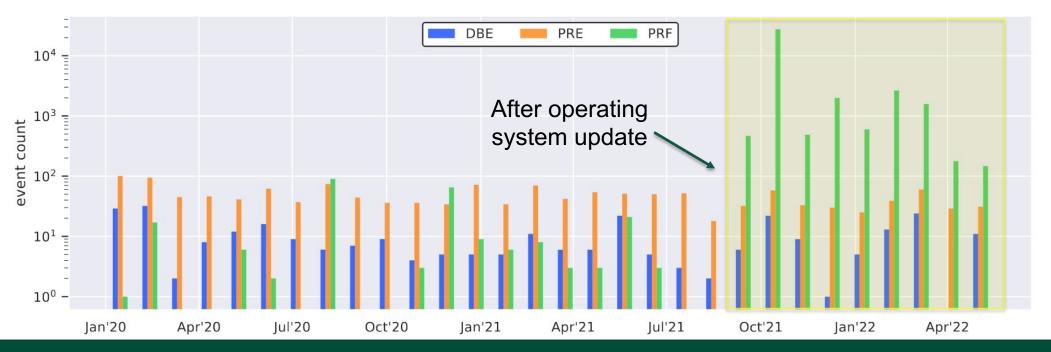
Vladyslav Oles, **Anna Schmedding**, George Ostrouchov, Woong Shin, Evgenia Smirni, and Christian Engelmann


GPU Memory Corruption

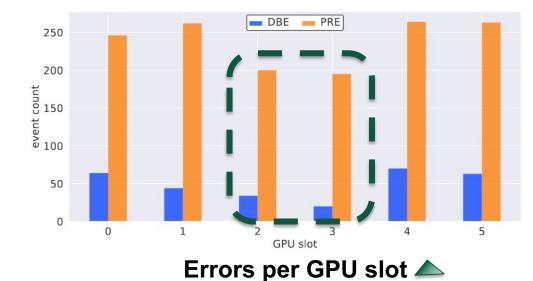


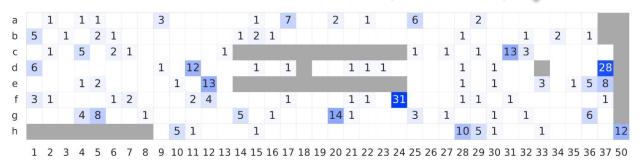
Summit Supercomputer


- Oak Ridge Leadership Computing Facility
- 122.3 Petaflops
- Layout
 - Incomplete 8 x 37 grid of cabinets
 - 18 nodes per cabinet
 - 2 CPUs, 6 Nvidia V100 GPUs per *node*
 - GPUs have 16GB modules
 of *stacked HBM2 memory*


Publicly available! https://doi.org/10.13139/OLCF/1970187

Temporal Trends

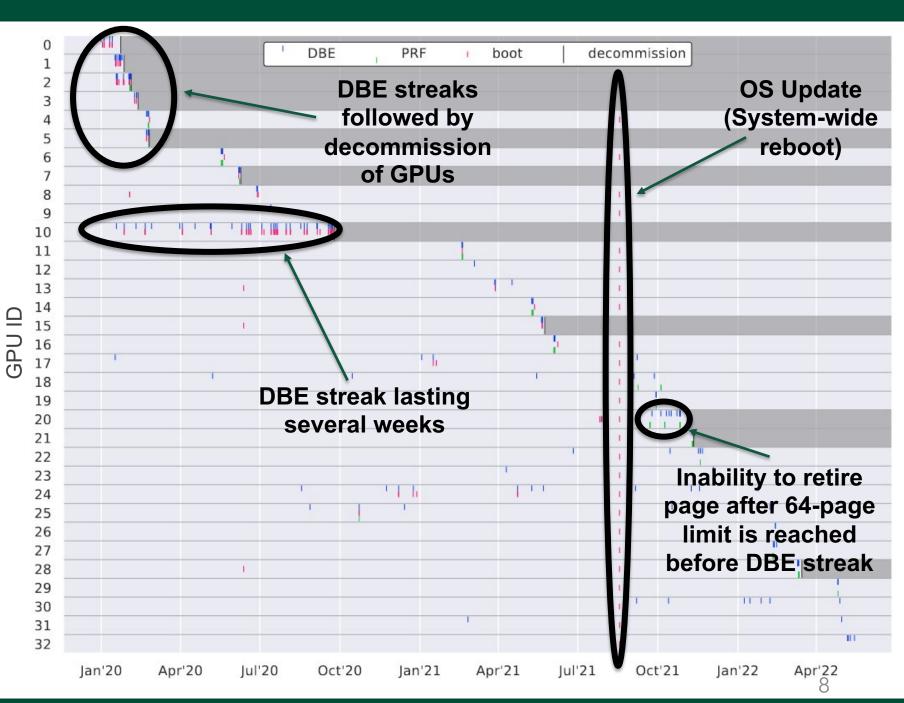

- PREs/DBEs consistent over time
- Many PRFs occur repeatedly on the same GPU
 - 97.2% of PRFs are from 27 jobs
 - Application repeatedly accesses memory page listed for retirement


6

Spatial Distribution

- No correlation with cabinet location in the facility
- No correlation with node height in cabinet
- GPU 2 & 3 on node are geometrically central with fewer errors

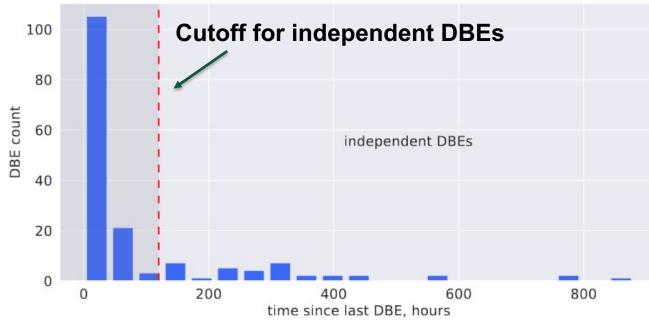
DBEs per Summit cabinet (top-down) 🤝


PREs per Summit cabinet (top-down) 🔝

а	6	6	1	2	9	4	4	5	5	3	6	6	1	1	3	3	16	1	3	1	4	6	1	6	8	4	3		17	2	2	2	2	4	3	4	
b	11	5	7	5	4	5	2	1	5	1	8	2	4	1	3	2	5	6	6	4	2	1	3	1	3	3	3	3	2	7	5	5	2	2	3	6	
С	2	1	4	16	6	5	5	3	2	2	3	5	5													7	2	3	3	5	15	8	2	1	3	4	4
d	15	4	8	2	7	6	3	5	4	6	28	5	4	1	8	1	4		2	6	7	5	5	3	5	2	3	9	5	6	3	1		1	5	4	40
е	4	4	5	4	2	2	2	6	2	5	3	36	2												2	3	5	1	1	35	2	4	12	3	4	7	14
f	7	4	2	4	3	3	4	5	5	4	7	9	10	2	7	4	6	4	4	4	2	2	2	37	2	3	2	2	8	3	5	7	5	5	6	4	6
g	3	2	4	18	7	7	3	5	8	4	8	4	9	2	2	10	3	6	1	19	6	11	8	2	10	5	6	5	6	2	8	7	5	7	2	7	2
									10	7	Δ	Δ	3	6	6	3	6	4	4	5	4	5	1	4	4	5	6	13	11	9	2	2	3	3	6	12	5
h									TO	'	-	-	5	0	0	5	0			5		5	-			5	0	+5		2	-	-	5	5	0	12	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 50

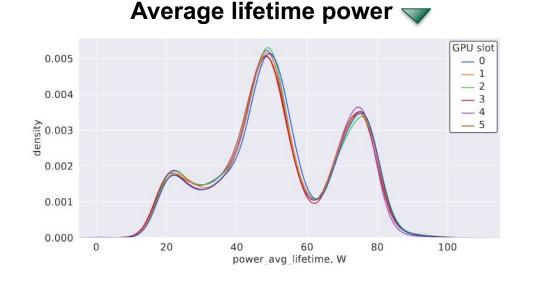
Are There DBE Patterns?

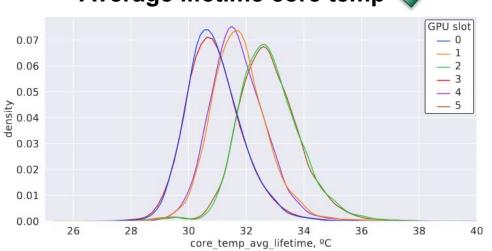

- GPUs often experience DBEs in streaks
- Time between DBEs on GPUs with >1 DBE:
 - Mean: 20 Days
 - Median: 20 Hours

Understanding GPU Trends

Snapshot (at a time stamp)

- Aggregates of power and temperature
- Job parameters
- Independent DBE points
- Infer GPU usage from power consumption


Patterns of Lifetime Utilization


Power

- Nodes fall into 3 groups with uneven workloads
- Identical per GPU slot
- Caused by job scheduler policies

Temperature

GPU temperature depends on the order coolant reaches each slots

Average lifetime core temp

fan0

fan1

fan2

fan3

disks

⊨dir

cpu

⊟dimm x4 ∃

0

NVM-e

HCA

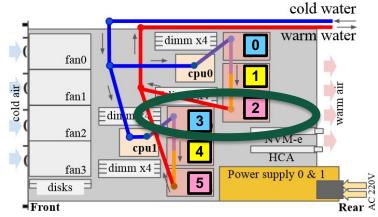
Power supply 0 & 1

 \equiv dimm x²

5

cold water

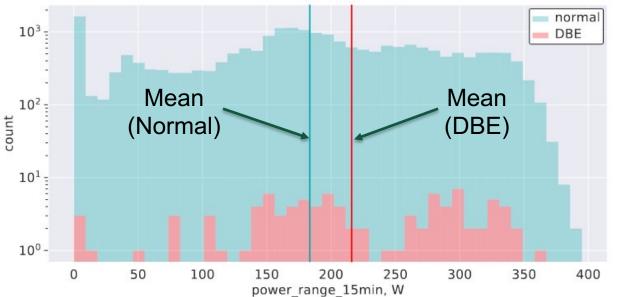
warm water


Rear 🗹

10

Does GPU Slot Affect DBEs?

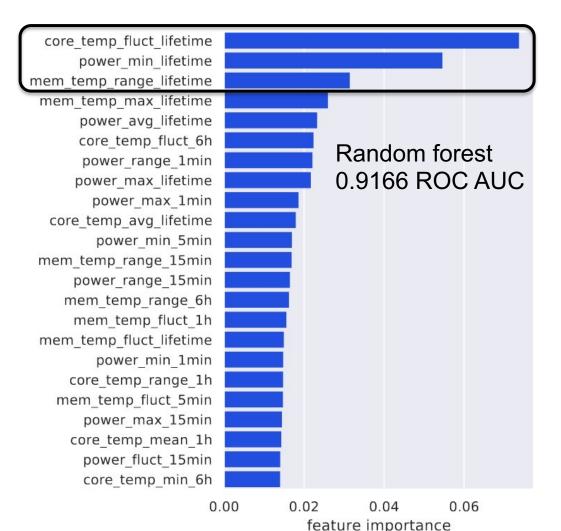
Are snapshot type and GPU slot independent?


- Dependent
- If streaks excluded, independent
- Geometrically central GPUs are more resilient to DBE streaks
- Not linked to patterns in GPU *utilization* or *telemetry*

Thermal & Power Effects on DBEs?

Short term power range

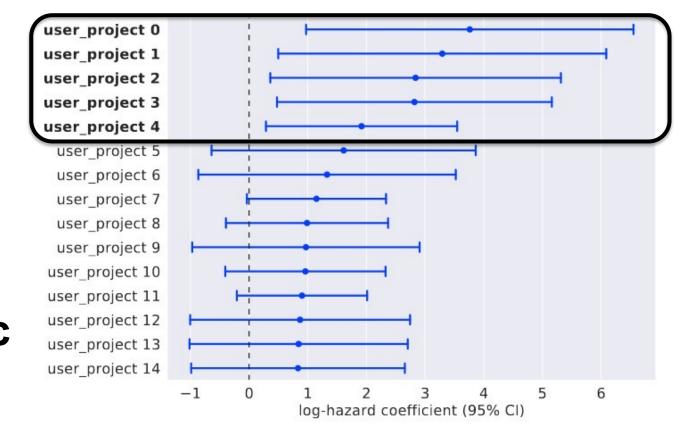
 High variation in shortterm power may increase susceptibility



		Variable	p-value	$DBE \leq normal$
•	her baseline 🛛 🦯	power_min_lifetime	0.01618	>
activ	rity increases 🧹 🥿	<pre>power_avg_lifetime</pre>	0.01588	>
	sceptibility	<pre>power_fluct_lifetime</pre>	0.01413	>
5u		<pre>core_temp_min_lifetime</pre>	0.01033	>
		ore_temp_fluct_lifetime>	0.01120	<
		power_max_6h	0.01196	>
	Eroquopt	power_range_6h	0.01106	>
	Frequent	<pre>mem_temp_fluct_1h</pre>	0.04880	<
	utilization	power_min_1h	0.00361	<
	increases	power_max_1h	0.00927	>
		power_range_1h	0.00409	>
normal DBE	susceptibility	core_temp_max_1h	0.02344	>
DBL		core_temp_range_1h	0.00239	>
		<pre>mem_temp_max_1h</pre>	0.02848	>
		<pre>mem_temp_range_1h</pre>	0.00803	>
		<pre>power_min_15min</pre>	0.01722	<
		power_max_15min	0.00180	>
		power_range_15min	0.00056	>
		<pre>core_temp_max_15min</pre>	0.04717	>
		<pre>core_temp_range_15min</pre>	0.00381	>
		<pre>mem_temp_range_15min</pre>	0.02683	>
	Most significant	power_max_5min	0.00274	>
	_	power_range_5min	0.00124	>
	difference	core_temp_range_5min	0.02453	>
400		power_max_1min	0.00271	>
		power_range_1min	0.00239	>
		core_temp_max_1min	0.04593	> 12

Snapshot Classification

Classification of DBE vs. Normal


- Explainable ML methods (random forest, SVM, ...)
 - Poor performance on entire data set
 - Good performance on GPUs with a prior DBE
- Stress factors on predisposed units are distinct from the general population

Workload Patterns and DBEs

Survival analysis

- 5 workloads have a higher chance of DBEs
 - 4 use mixed
 precision arithmetic

Conclusions

- Operational patterns affect increased DBEs in Summit
 - Physical node placement
 - HPC operation stresses
 - Individual predisposition
- Challenges
 - Unavailability of temporal SBE data
 - Unavailability of intensity of memory operations
- Root causes of DBEs are still an open problem
 - Findings here may be useful for other HPC systems

QUESTIONS?

Thank you to my collaborators:

Vladyslav Oles, George Ostrouchov, Woong Shin, Evgenia Smirni, and Christian Engelmann

Anna Schmedding | akschmedding@wm.edu https://www.cs.wm.edu/~akschmed/