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ABSTRACT
GPU memory corruption and in particular double-bit errors (DBEs)
remain one of the least understood aspects of HPC system reliability.
Albeit rare, their occurrences always lead to job termination and can
potentially cost thousands of node-hours, either from wasted com-
putations or as the overhead from regular checkpointing needed
to minimize the losses. As supercomputers and their components
simultaneously grow in scale, density, failure rates, and environ-
mental footprint, the efficiency of HPC operations becomes both
an imperative and a challenge.

We examine DBEs using system telemetry data and logs col-
lected from the Summit supercomputer, equipped with 27,648 Tesla
V100 GPUs with 2nd-generation high-bandwidth memory (HBM2).
Using exploratory data analysis and statistical learning, we extract
several insights aboutmemory reliability in such GPUs.We find that
GPUs with prior DBE occurrences are prone to experience them
again due to otherwise harmless factors, correlate this phenomenon
with GPU placement, and suggest manufacturing variability as a
factor. On the general population of GPUs, we link DBEs to short-
and long-term high power consumption modes while finding no
significant correlation with higher temperatures. We also show
that the workload type can be a factor in memory’s propensity to
corruption.

CCS CONCEPTS
• Hardware→ Transient errors and upsets; • Computer sys-
tems organization → Single instruction, multiple data; Reliability.
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1 INTRODUCTION
At the verge of the exascale era, we are facing an unprecedented
complexity of modern HPC systems, operating which in a reliable
manner is a non-trivial task. In particular, computational clusters
have fully embraced GPUs as a key component, characterized by
higher parallel performance and an increased failure rate as com-
pared to CPUs. Random bit flips, where the memory state unin-
tentionally changes from 0 to 1 or vice versa, is one of the most
pervasive and disrupting GPU errors. While GPUs are typically
equipped with error-correcting code scheme that is able to detect
and correct single bit flips, an occurrence of two bit flips in the
same memory word (double-bit error, DBE) is a critical event that
can potentially cost thousands of wasted node-hours.

Reliability of GPUs and in particular their memory has been the
subject of multiple studies [23, 24, 28, 44, 45]. GPU memory bit
flips have been successfully correlated with workload and thermal
patterns on some systems [23, 24] but full understanding of the
reasons behind this phenomenon is lacking. Except for the rare
cause of cosmic radiation [41, 43], a more likely explanation is
charge leakage to a neighboring memory cell, especially under
extreme temperatures [17, 29] or intensive memory access [16].
Moreover, because the memory chip density is known to affect the
incidence of memory errors [19], the potential impact of the 3D-
stacking architecture used in high-bandwidth memory reliability is
yet to be studied.

This paper aims to understand the relationship between GPU
activity and bit flips in GPU memory by studying the Summit
supercomputer, a pre-exascale system at the Oak Ridge Leadership
Computing Facility. Commissioned in 2019 and still operational,
Summit is equipped with 27,756 GPUs featuring HBM2 memory
which provides an opportunity to study bit flips in GPU memory
at scale. Our analysis of Summit operational data spanning over
2.5 years identifies strong relationships between certain operation
patterns and DBEs. To the best of our knowledge, this is the first
study addressing DBEs in HBM2 units at scale.

Comprehensive reliability study on large-scale data from
a production HPC system. Our study is conducted on a multi-
modal dataset featuring high-resolution (1Hz) power and thermal
telemetry from all 27,756 GPUs in the system, job scheduler records,
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Figure 1: Physical layout of a Summit node [36]

and GPUmemory error logs from a 2.5-year interval. By correlating
memory errors with other operational data streams, we gain better
understanding of factors associated with the errors and identify
those factors for which no such association can be established.

Systematic identification of variables relevant to DBE oc-
currence. Given the scarcity of DBE events and the vast number
of potential factors behind their occurrence, it is critical to narrow
down the range of relevant factors. We apply various methods such
as t-tests, survivability analysis, and interpretable machine learning
models to systematically identify features that have high impact
on DBEs. We identified variation in short-term power intake, ap-
plication behavior, lifetime GPU utilization, and activity levels of
a GPU in the idle state as some of the key variables with a strong
relationship towards memory corruption.

Reliability characteristics of HBM2 units at scale.Our study
reveals new insights about DBEs in HBM2 GPUs, further enriching
knowledge gained by prior GPU reliability studies in HPC settings
[23, 24, 28, 44, 45]. Among many findings, we report that

• geometrically central GPU placements in the node layout
exhibit higher resilience to memory corruption;

• DBEs are strongly correlated with power consumption dy-
namics, and particularly the high power fluctuations that
reach towards the thermal design power limits;

• the majority of identified DBE-prone HPC applications have
mixed-precision capacity;

• higher intensity of the long-term GPU utilization increases
its susceptibility to future memory corruption;

• the thermal state seen in production settings has minimal
impact despite occasional high-temperature values near or
beyond safe limits (80°C – 90°C).

2 SYSTEM AND DATA
2.1 Summit architecture
Summit, which entered No. 1 on the Jun. 2018 edition of the Top500
list [12] of supercomputers, is a 122.3 petaflops pre-exascale system
located at the Oak Ridge Leadership Computing Facility (OLCF). It
has a total of 4,626 IBM AC922 nodes organized into 257 cabinets
(vertical stacks of 18 nodes), which are arranged on the floor as
an incomplete 8 x 37 grid. Each Summit node is powered by two
Power9 CPUs and six Nvidia Tesla V100 GPUs, whose physical
layout is shown on Figure 1. The total of 27,756 V100 units are
equipped with 16GB modules of stacked HBM2 memory.

Errors in memory can be caused by natural radiation and ther-
mal neutrons (bit flips), by defects (stuck bits) and faulty memory
logic [27, 39, 42]. The Nvidia Tesla V100 architecture offers sev-
eral GPU memory error handling methods. It supports single error
correction double error detection (SECDED) error correcting code
(ECC). A single-bit error (SBE) is corrected upon reading from cor-
rupted memory, while a double-bit error (DBE) can be only detected.
The Nvidia driver additionally supports the retirement of memory
pages that contain bad memory cells [26]. This dynamic page retire-
ment excludes a memory page from subsequent allocations, which
is referred to as offlining, once a page experienced a DBE or two
SBEs on the same address. A memory page is then mapped out of
usage by the driver upon next reattachment of the GPU. Offlining
memory pages requires stopping all GPU clients and reinitializing
the GPU or rebooting the system. Up to 64 memory pages can be
retired, at which point the page retirement table is full. The num-
ber of DBE and SBE locations that can be temporarily stored for
offlining upon the next reinitialization or reboot is at least 192 and
can be up to 600 depending on the GPU model.

The following errors are logged to the system error log [1]:

• XID 48, a DBE detected,
• XID 63, a page retirement event (PRE) occurred, and
• XID 64, a page retirement failure (PRF) occurred.

In general, a logged PRE without a related preceding logged DBE
points to two SBEs on the same address as being the reason for the
page retirement. Otherwise, the reason is a DBE. A PRE followed
by a related PRF means that the page has been listed for retirement
but has not been retired yet, perhaps due to the absence of reboot.
A PRF without a related preceding PRE means that the 64-page
retirement limit is reached.

2.2 Data preparation
Our study is based on several source datasets covering different
aspects of Summit operations in the period between 1 Jan 2020 and
17 May 2022, which is an extension of the datasets in [36]. Table 1
describes the contents of the datasets. Using these source datasets,
we prepared derived datasets (see Table 2), described below.

Nvidia error records store times and locations of DBEs and other
GPU hardware and software errors (Table 2-(a)). Error locations,
given as a combination of the Summit node and its PCI Express
bus hosting the offending GPU, do not uniquely identify a physical
unit as GPUs are occasionally moved between the Summit nodes
for reliability purposes. To link GPU errors to physical units, we
rely on boot logs of individual Summit nodes that record a map-
ping between the 6 PCI Express buses and serial numbers of the
corresponding GPUs every time a node is restarted.

To better understand the circumstances associated with the GPU
error events, we use their job allocation-contextual information to
create GPU snapshots (Table 2-(b)), a concept similar to the black
box flight recorder, that represent 1Hz time-series telemetry before
and after the GPU error events. Further, to establish a baseline for
comparative analysis, we create analogous GPU snapshots derived
from non-error periods of the GPU lifetime (Table 2-(c)). A detailed
description of snapshot construction is given in Section 4.
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Table 1: Source Datasets (1 Jan 2020 to 17 May 2022)

id Source Sample Interval Rows Footprint Description

(a) NVidia GPU XID error log At occurrence 3M 600MB GPU error hardware and software errors
(b) Summit node reboot log At reboots 60K 7MB Reboot time scan of GPU PCI Express bus and serial numbers
(c) Job scheduler allocation history End of every job 938K 285MB Project, user, node count, allocation param., submit, start & end time
(d) Per-node job scheduler allocation history End of every job 88M 14GB Per-node job allocation history, end of job statistics
(e) Per-GPU power and thermal telemetry 1 sec 268B 16TB (compressed) Per-node, per-component power and temperature

Table 2: Data Preparation Overview

id Name Source Footprint Description

(a) Location augmented GPU error logs Table 1-(a,b) 8MB GPU error hardware and software errors augmented with their physical locations
(b) DBE GPU Snapshots Table 1-(a,c,d,e) 330KB Per GPU snapshots of power & thermal time series in proximity with the DBEs
(c) Sampled normal GPU Snapshots Table 1-(a,c,d,e) 56MB Per GPU snapshots of sampled normal snapshots of power & thermal time series
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Figure 2: Temporal trends of memory corruption events on Summit.

2.3 Dataset availability
GPU error logs, node boot logs, and per-node job scheduler history
(Table 1-(a,b,d)), as well as the snapshot dataset (Table 2-(b,c)), are
publicly available at https://doi.org/10.13139/OLCF/1970187 [37].

3 EXPLORATORY ANALYSIS
To understand general trends and patterns of GPU memory errors
on Summit, we analyze Nvidia error logs to obtain summary sta-
tistics of DBE, PRE, and PRF occurrences. In the period of January
2020 – May 2022 Summit has seen the total of 295 DBEs, 1,430 PREs,
and 35,791 PRFs, which translates to a system-wide mean time be-
tween events of 70.7 hours, 14.6 hours, and 0.6 hours, respectively.
Surprisingly, the number of PRFs has a drastic 170-fold increase
from the analogous count for the period of 2020 alone [36]. At the
same time, only a fraction of nearly 28K Summit GPUs are affected
by memory errors — DBEs, PREs and PRFs are encountered by 112,
1,011, and 138 GPUs, respectively. Furthermore, the top-1 GPUs by
error count in each category have accounted accordingly for 10.5%
of DBEs, 2.6% of PREs, and 73.3% of PRFs. Interestingly, the latter
73.3% have all occurred within the same HPC job, implying that
PRFs can be induced by a user application, despite being considered
hardware-caused in the NVidia list of GPU errors [1]. Because these
26,223 PRFs are preceded by a PRE at the very beginning of the job,
we conclude that they were caused by the application repeatedly
accessing the memory page whose retirement has been attempted
and failed.

Finding 1. Large numbers of PRFs can be traced to application
behavior.

To see if event occurrences have changed over time (e.g. due to
GPU memory degradation), we plot the monthly error and failure
event counts of DBEs, PREs, and PRFs (Figure 2). While the DBE
and PRE counts seem consistent over the entire observation period,
the PRFs show a significant uptick starting from September of 2021,
shortly after the operating system of Summit was updated to Red
Hat Enterprise Linux 8 on Aug 18. The 35,554 PRFs from 1 Sep 2021
– 17 May 2022 period took place within only 113 HPC jobs, out of
the 15M jobs performed on Summit in this period. 97% of these
PRFs occurred on GPUs with no DBEs in the observed 2.5-year
interval, supporting the idea of application behavior, rather than
hardware faults, being the cause.

In the absence of reliable data about the HPC application run
within a job, we use the project that a job belongs to and the sub-
mitting user as a proxy for identifying an application. We found
that 97.2% of the 35,554 PRFs are only 10 project-user combina-
tions spanning 27 jobs, which indicates that workload patterns
of the associated applications are responsible for the anomalous
PRF frequency. Prior to 1 Sep 2021, jobs corresponding to these
project-user combinations encounter 46 PREs but no PRFs. It is
possible that these applications never reached its page retirement
limit until then. At the same time, the contiguity of the elevated

https://doi.org/10.13139/OLCF/1970187
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(a) DBE frequency per Summit cabinet in top-down view
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Figure 3: Spatial distribution of DBEs and PREs on Summit.
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Figure 4: DBE and PRE frequency per GPU placement within
Summit node.

PRF counts starting from this period makes it likely that the update
of the Summit operating system enabled this.

To see if memory errors exhibit any spatial trends based on the
location of a Summit node, we plot DBE and PRE counts per Summit
cabinet and, separately, per node height in a cabinet (Figure 3). The
correlation between locations of high DBE and PRE counts is likely
a result of the similarity between causes of the two error types.
With PREs being triggered both by DBEs and multiple SBEs on the
same memory page, they are naturally more frequent than DBEs
alone. At the same time, the plots do not indicate that heightened

frequency of either of the error types is correlated with any of
the 3 spatial dimensions of Summit node location. Most locations
with abnormally high error counts are due to the presence of top
offending GPUs, which is in line with the phenomenon observed
in [44].

Figure 4 breaks down the DBE and PRE counts by GPU placement
within a Summit node. It shows that GPU slots 2 (GPU 2 on CPU 0)
and 3 (GPU 0 on CPU 1) — the two geometrically central placements
(see Figure 1) — have lower counts for either error type. We discuss
potential reasons for this trend in Section 4.2, where it is analyzed
in the context of GPU utilization.

To understand the patterns of DBE occurrence on individual
GPUs, we plot the timeline of DBEs for each GPU with multiple
offenses over the studied period. Figure 5 shows the instances of
DBEs, PRFs, node reboots, and decommissions on a shared time
scale for the 33 such GPUs, of which 11 ended up decommissioned.
The operating system update on 18 Aug 2021 is shown as a Summit-
wide reboot. The plot illustrates that GPUs often experience DBEs
in streaks, in which every subsequent DBE is occurring within
days if not hours from its predecessor on the same unit. While the
mean time between subsequent DBEs on the 33 multiple-offending
GPUs is almost 20 days, the median is only 20 hours, which further
supports the previous observation of error temporal locality with
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Figure 5: Timeline of memory error and failure events and reboots on GPUs with multiple DBEs.

the much older Nvidia Kepler GPUs and GDDR memory from [45].
Such small time between errors on individual units may be an
outcome of reaching the 64-page retirement limit and the resulting
inability to retire the offendingmemory page. Under such a scenario,
GPUs are expected to encounter at least one PRF at the beginning of
a DBE streak. While this pattern is often visible on the plot, it is not
exhibited by all DBE streaks. This suggests predisposition (e.g. due
to manufacturing variability i.e. the unintended differences between
the manufacturing processes of individual chips) as another reason
behind the contiguous susceptibility to DBEs.

Finding 2. DBEs often occur on the same GPU within days,
hours, or even minutes from one another, resulting in DBE
streaks that can last for weeks.

4 GPU SNAPSHOTS
A DBE occurrence on a chip is the result of both a predisposition
of the chip to a DBE as well as the stresses that were put on the
chip just before or accumulated over a period of time before its
occurrence.

Predisposition to a DBE is a concept related to production yield,
where manufactured chips are put under various stresses and clas-
sified into quality categories. Each quality category still contains

a range of predispositions that differ in the amount of stress they
can handle before a DBE. The predisposition may be fixed by the
manufacturing process for a given memory chip but it may also
change due to the accumulation of various stresses of its use.

Stresses that can lead to a DBE are various attributes and ac-
tions of the Summit architecture that affect a given GPU memory.
This includes local power fluctuations, position in the local cooling
architecture, job scheduling policies, and even HPC application
logic. To study this, we need data on the stresses over various win-
dows of GPU use, as we don’t know the time scales over which a
predisposition to a DBE can be affected.

4.1 Snapshot construction
To explore potential trends behind GPU operations associated with
DBEs, and to better understand operational patterns on Summit,
we constructed a dataset of “GPU snapshots” by combining the
telemetry and job scheduler data with the error logs (Table 2-(b,c)).
For every DBE, we collect aggregates of power consumption and
temperature measurements of the offending GPU before the DBE,
as well as the parameters of the job running on the respective node
at the time of DBE. Building off of the time scales chosen in [24],
we aggregate the telemetry over periods of 1 minute, 5 minutes, 15
minutes, 1 hour, and 6 hours preceding the DBE, as well as for the
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period between 1 Jan 2020 and the error to represent lifetime GPU
usage. The aggregates themselves are comprised of the minimum,
maximum, range (the difference between the two extrema), aver-
age, and “fluctuation”, defined as the average difference between
consecutive measurements and aimed to quantify the volatility of
GPU usage intensity.

Because the telemetry data lacks 30% of the expected observa-
tions and contains 15% missing values (2% and 21% of the power
and thermal measurements, respectively), and because “lifetime”
aggregates are taken over periods of different lengths, using the
average and not the total in the fluctuation aggregates ensures
that they are directly comparable among the snapshots. For the
same reasons, the average aggregates are chosen as a proxy for
the cumulative intensity of GPU utilization. Because GPU power
and especially thermal sensors can sometimes produce faulty zero
measurements, we replace these with NaNs for the purposes of
aggregation.

We collect the user, project, and allocation flags of the job allo-
cation (if any) on the hosting node at the time of snapshot. In order
to decide whether the GPU has been utilized by the job, we also
measure peak GPU power consumption between the job start and
the snapshot.

In addition to the DBE snapshots, we also construct 50,000 “nor-
mal” snapshots by extracting the same features for randomly chosen
GPUs and moments in time within the studied period. The normal
snapshots serve as an analogous data representation of baseline
GPU operations on Summit. To ensure no overlap between the DBE
and normal GPU operations, we remove normal snapshots within
24 hours from the nearest DBE on the respective GPU.

Independence of observations (sample points) is an assump-
tion that permeates most statistical and machine learning meth-
ods. While this assumption is rarely perfectly satisfied in practice,
stronger departures can introduce bias and invalidate inference.
Because subsequent DBEs on the same GPU within a short period
of time may be induced by the same underlying event, we exclude
them from our analysis in an effort to obtain independently occur-
ring DBEs. To choose what constitutes a sufficiently long period
after which a subsequent DBE can be deemed independent, we
visualize the distribution of elapsed time between consequent DBEs
on individual GPUs in Figure 6. The vast majority of subsequent
DBEs occur within 2 to 5 days from their predecessor. Based on
the distribution shape, we set a conservative cut-off value for inde-
pendent DBEs to be 5 days. After excluding subsequent snapshots
within less than 120 hours after a DBE on the same GPU, our dataset
consists of 166 DBEs and 49,963 normal snapshots.

To further facilitate our analysis, we narrow down the scope
to those DBEs which occur on GPUs utilized by the current job.
Since the job scheduler data does not directly contain information
about whether an individual GPU (or any of them) has been used
during a job, let alone before a particular moment (i.e. when the
snapshot was taken), we infer this information from GPU power
consumption collected between the job start and the snapshot, by
comparing its peak value against a data-informed threshold.

Figure 7 shows the distribution of GPU power consumption min-
ima and maxima within Summit jobs executed between 1 Jan 2020
and 17 May 2022. The distribution is plotted based on a random
sample of 1% (33K) of the jobs corresponding to 40M of GPU power
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Figure 6: Distribution of elapsed time between same-GPU
DBEs, with values over 900 hours truncated. Dashed line at
5 days (120 hours) shows the cut-off value to deem DBEs
independent of the previous occurrence.
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Figure 7: Distribution of GPU power consumption extrema in
individual jobs. Dashed line at 80W shows the cut-off value
to deem GPUs utilized by the job.

extremum pairs. Because the minima represent levels of GPU ac-
tivity in the idle state, we posit that the bottom cluster represents
power profiles of jobs with no GPU allocation, while the top one is
comprised of jobs that requested GPUs, putting them in the state
of heightened readiness. GPU peak power consumption divides
the top cluster into two subclusters of idle (centered at ≈50W) and
utilized GPUs. The latter cluster starts from a little over 100W,
which is in line with the existing knowledge of the V100’s power
consumption during a typical memory-bound workload — the least
power-demanding workload type [4]. Figure 7 indicates that the
majority of jobs requesting GPUs end up not using them, which
can be explained by the runs that never reach the GPU utilization
stage e.g. due to testing purposes or code failure. For our analy-
sis, we set the peak power consumption threshold to 80W: GPUs
exceeding it during the pre-snapshot part of a job are considered
“under a workload” and therefore relevant to our analysis. Using
this threshold, only 22K snapshots (including 94 DBEs) see prior
GPU utilization in the current job. The remaining 28K snapshots
without GPU utilization by the job are only used when analyzing
general patterns of GPU usage, see Section 4.2.

Finding 3. Almost a half of (independent) DBEs occurring
within a job do not result from GPU utilization.
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4.2 Patterns of lifetime GPU utilization
To understand GPU utilization patterns on Summit independent of
workload specifics, we analyze the lifetime telemetry aggregates in
our snapshots. We use lifetime power consumption average for a
GPU as a proxy for frequency and intensity of its overall usage. Fig-
ure 8 shows the distribution of lifetime power consumption average,
grouped by GPU placement within the hosting node. Given that the
aggregate is a proxy for frequency and intensity of cumulative GPU
utilization, the plot suggests three distinct modes of GPU usage
on Summit, corresponding to the average power consumption of
around 21W, 49W, and 76W. Because this trend is near-identical for
all six GPU slots, we conclude that it is an indication of consistently
uneven GPU workloads assigned at the node level, likely resulting
from the job scheduler policies on Summit. Analogously, Figure 9
shows the distribution of lifetime memory temperature average
per GPU placement in the 50K snapshots. It demonstrates a clear
dependency of GPU temperature on the order in which the coolant
reaches GPU locations in two separate loops — one per CPU.

Finding 4. Summit nodes comprise of 3 groups that are con-
sistently given uneven GPU workloads, likely due to the node-
level job scheduling logic.

To put the lower DBE counts for the geometrically central GPU
slots 2 and 3 from Figure 4 in the context of GPU utilization, we first
perform the chi-square test of independence between the snapshot
type and the GPU slot. When run on the original set of 295 DBEs
and 50,000 normal snapshots (Table 3(a)), it yielded the p-value
of ≈ 10−7, confirming the existence of a significant difference in

Table 3: Contingency tables counting DBE and normal snap-
shots across the six GPU slots.

(a) All snapshots.

0 1 2 3 4 5
DBE 64 44 34 20 70 63

Normal 8,303 8,313 8,410 8,231 8,392 8,315

(b) After discarding snapshots within 120 hours after a DBE.

0 1 2 3 4 5
DBE 34 28 26 17 28 33

Normal 8,303 8,313 8,409 8,231 8,392 8,315

(c) After additionally discarding snapshots without GPU utilization.

0 1 2 3 4 5
DBE 20 16 18 9 14 17

Normal 3,716 3,699 3,676 3,730 3,734 3,623

the DBE-to-normal snapshot ratio across the GPU slots. However,
merely removing snapshots within less than 120 hours after a same-
GPU DBE (Table 3(b)) and re-running the test gave the p-value of
0.254, indicating no significant dependency of the DBE-to-normal
snapshot ratio on the GPU slot. Further removing the 28K snapshots
without GPU utilization by the current job (Table 3(c)) produced
the p-value of 0.437.

To attribute the significance of the chi-squared test on the Ta-
ble 3(a) data to individual GPU slots 0–5, we considered standard-
ized residuals [3] of their DBE snapshot counts. The residuals follow
the standard normal distribution and were computed as 2.33, -0.79,
-2.43, -4.48, 3.17, 2.17, respectively. Because their critical value at
the significance level of 𝛼 = 0.05 is ±1.96, we conclude that GPU
slots 2 and 3 are less prone to DBE streaks (but not significantly
so to independent DBEs) than other GPU placements. At the same
time, the two GPU slots are assigned consistently similar work-
loads (Figure 8) and their thermal modalities exhibit much higher
resemblance to slots 5 and 0, respectively, than they do to each
other (Figure 9). We conclude that the phenomenon is not linked
to patterns in GPU utilization or telemetry and therefore captures
resilience properties specific to the GPU physical locations.

Finding 5. Geometrically central GPU placements on a node
are more resilient to DBE streaks.

To study how various lifetime aggregates relate to one another,
we consider their pairwise correlations. Figure 10 visualizes the
Spearman’s correlation coefficients [40] between lifetime minima,
averages, and fluctuation aggregates. Some of the correlations are
easily explainable: the near-perfectly correlated power consump-
tion average and fluctuation are a consequence of oscillating power
measurements of an engaged GPU. The substantial correlation be-
tween the core and memory temperature aggregates follows from
the shared cooling and proximity of the two GPU components. The
reasons behind the significant negative correlation between the
fluctuation of power and (mostly memory) temperature are not as
straightforward. A potential explanation relates to the state of ther-
mal equilibrium brought to engaged GPUs by the consistently high
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Figure 10: Correlation between lifetime telemetry aggregates.

energy intake and a steady supply of the coolant. This phenomenon
has been documented in [36] (see Figures 12 and 17 therein).

5 STATISTICAL INFERENCE
Here, we only use snapshots with GPU utilization by the currently
running job. Our dataset contains a total of 22K such snapshots, of
which 94 are DBE snapshots.

5.1 Thermal and power usage differences
Testing the difference between population means is a staple for
comparing numerical data obtained from two distinct groups. We
employ this approach to see if some telemetry aggregates have
significantly different means in DBE and normal snapshots, which
would hint at GPU usage patterns associated with such memory er-
rors. Specifically, we run the two-sample (unpaired) Student’s t-test
for each of the 90 telemetry aggregates (power/core t°/memory t° ×
min./max./range/avg./fluct. × 1min/5min/15min/1h/6h/lifetime).
Table 4 shows all of the aggregates for which the test detects a sta-
tistically significant difference between DBE and normal snapshots
at 𝛼 = 0.05. The variable in bold also has its means significantly
different at the more stringent significance level of 𝛼 = 0.00057,
established using the Šidák correction [38] to bound the chance of
any false positives among the 90 test outcomes by 0.05.

At p-value 0.00056, the range of GPU power consumption over
the 15 minutes prior to a snapshot is the only variable with a
significant difference between the means for the corrected 𝛼 . Its
distribution in DBE and normal snapshots is shown on Figure 11(a)
and demonstrates that the 15-minute power range is bigger in DBEs
by on average 33W. To illustrate the associated thermal effects, we
plot the distribution of 15-minute memory temperature range (Fig-
ure 11(b)), showing an average difference of less than 1.5°C between
DBE and normal snapshots. The latter phenomenon is unlikely to
be a cause of DBEs, given the consistent existence of a similar tem-
perature difference between the GPUs 0 and 2 for each CPU (see
Figure 9) that is not necessarily matched by an increase in their DBE
occurrence. It is therefore more plausible that the high variation
in short-term power intake is directly causing the heightened sus-
ceptibility of GPU memory to DBEs — or that the two phenomena
share an underlying cause such as high-intensity workload patterns
increasing the likelihood of cell-to-cell interference [16].

Interestingly, the significance of the difference in power_range_15min
is considerably higher than in the variable’s two components, the 15-
minute power minimum (p-value 0.01722) and maximum (p-value

Table 4: Variables whose means in DBE and normal snap-
shots are significantly different at 𝛼 = 0.05. The means of
the boldened variable are significantly different even at the
corrected 𝛼 = 0.00057.

Variable p-value DBE ≶ normal

power_min_lifetime 0.01618 >

power_avg_lifetime 0.01588 >

power_fluct_lifetime 0.01413 >

core_temp_min_lifetime 0.01033 >

core_temp_fluct_lifetime 0.01120 <

power_max_6h 0.01196 >

power_range_6h 0.01106 >

mem_temp_fluct_1h 0.04880 <

power_min_1h 0.00361 <

power_max_1h 0.00927 >

power_range_1h 0.00409 >

core_temp_max_1h 0.02344 >

core_temp_range_1h 0.00239 >

mem_temp_max_1h 0.02848 >

mem_temp_range_1h 0.00803 >

power_min_15min 0.01722 <

power_max_15min 0.00180 >

power_range_15min 0.00056 >

core_temp_max_15min 0.04717 >

core_temp_range_15min 0.00381 >

mem_temp_range_15min 0.02683 >

power_max_5min 0.00274 >

power_range_5min 0.00124 >

core_temp_range_5min 0.02453 >

power_max_1min 0.00271 >

power_range_1min 0.00239 >

core_temp_max_1min 0.04593 >

0.00180). The same trend is exhibited by the respective aggregates
of core and memory temperatures. This suggests that DBEs cor-
relate stronger with jumps in GPU usage intensity than with its
peaks alone. Moreover, the fact that short-term telemetry aver-
ages in DBEs and normal snapshots are not significantly different
even at 𝛼 = 0.05 (Table 4) means that the duration of peak power
consumption is not a factor for memory corruption.

The pattern of higher power and thermal maxima in DBEs, rep-
resenting more intense GPU utilization, is also visible on other
short-term time scales (Table 4). While power consumption and
temperature of an engaged GPU are closely correlated, the lower
significance of the differences in thermal rather than power extrem-
ities is consistent with the conclusion previously made in [35]: the
correlation between temperature and DRAM errors is indirect and
vanishes when controlling for utilization. This in turn contrasts
with the suggestion of a causal link between high temperature and
GPU memory corruption made in [45].

Finding 6. DBEs are associated with recent intensive GPU
utilization characterized by substantial changes in power in-
take over short periods of time. The association with elevated
temperatures is minor and likely a consequence of the above.

Furthermore, the fact that the difference in power maximum is
more pronounced at the 15-minute scale than at 5- or at 1-minute
scale indicates that the highest intensity of GPU utilization is typi-
cally observed further in the past and not immediately before the
error. Such a delay is likely caused by the gap between the corrup-
tion of GPU memory and its detection caused by accessing it.
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Figure 11: Distribution of telemetry aggregates in DBE
and normal snapshots. Vertical lines show the distribution
means.

Finding 7. The time between GPU memory corruption and
its detection in an HPC application can span minutes or even
tens of minutes.

While no lifetime telemetry aggregates show a significant differ-
ence between DBE and normal snapshots at 𝛼 = 0.00057, the rela-
tionships between those with detectable differences below 𝛼 = 0.05
allow for interpretations. In particular, we established that GPU tem-
perature fluctuation is inversely proportional to the workload. It im-
plies that core_temp_fluct_lifetime and power_avg_lifetime
both reflect the long-term frequency and intensity of GPU utiliza-
tion, with respective p-values of 0.01120 and 0.01588. Because the
two variables are not strongly correlated (Figure 10), the probabil-
ity of their detected differences both being a false positive is not
much higher than 0.01120 · 0.01588 = 0.00018, meaning that at
𝛼 = 0.00057 we can conclude they jointly are different between
the DBE and normal snapshots. This suggests that, analogously
to a car’s odometer reading being correlated to its likelihood of a
malfunction, frequent utilization of a GPU over its lifetime makes
it more susceptible to future memory corruption events. Of note
is the absence of lifetime temperature averages in Table 4, further
supporting the idea that high temperatures are not a significant
factor behind the DBEs. This is consistent with a recent finding
showing low dependence of DBEs on temperature on the Titan
supercomputer [20].

Another potentially related pair of lifetime aggregates from Ta-
ble 4 is the lifetime minima of GPU power consumption (p-value

0.01618) and core temperature (p-value 0.01033), both reflecting the
level of GPU activity in the idle state. Using the same reasoning
as above, we deduce that at least one of them is significantly el-
evated in the population of GPUs experiencing a DBE. It implies
that a GPU’s susceptibility to memory corruption is associated with
its permanently higher baseline activity levels. Because the ele-
vated lifetime power and temperature minima cannot result from
stresses of using the GPU (as they do not affect the initial GPU
activity after being installed), we hypothesize that the phenomenon
is likely caused by manufacturing variability. The latter might be
responsible for the higher DBE rate either directly or through incur-
ring more wear on the units (i.e. pushing their “odometer” through
permanently elevated power consumption or temperature).

Finding 8. GPU susceptibility to future DBEs increases with
the frequency and intensity of its lifetime activity. Manufac-
turing variability might be a factor behind the mildly raised
activity levels in some GPUs.

5.2 Snapshot classification
Unlike the statistical tests that analyze one variable at a time, ma-
chine learning models can provide more insights into the relevancy
of combinations of features. We apply interpretable classification
methods for differentiating between DBE and normal snapshots
based on telemetry features. To prepare the data, we drop rows
with missing telemetry data and subsample the non-DBE snapshots
to help with the class imbalance, resulting in 92 DBE and 184 nor-
mal snapshots. To assess classification performance, we present
modeling results in terms of area under the receiver operating char-
acteristic curve (ROC AUC). A ROC AUC value closer to 1 is better.
We evaluate the results from applying naïve Bayes, logistic regres-
sion, linear support vector machine, and random forest. All models
are trained using a 70/30 split for training and testing respectively.

When performing classification on the subsampled snapshot
data set, all methods initially perform poorly. The second column
of Table 5 shows the classification performance of various predic-
tors using the entire data set. Random forest, which is known to
be a good method for failure classification in other studies [5, 30],
has a ROC AUC of 0.53. The third column shows the classifica-
tion performance when limiting the dataset to the snapshots of
GPUs with prior DBE encounters (39 DBE snapshots vs 45 normal),
which indicates predisposition. The noticeable improvement in the
model accuracy for these snapshots is consistent with other ma-
chine learning predictors of GPU memory corruption, trained on
SBEs [24].

Finding 9. Predicting GPU utilization-linked DBEs from
telemetry data using interpretable models is much easier for
previously offending GPUs. This suggests that the stress fac-
tors in already predisposed units are distinct from those in the
general GPU population.

Random forests are known to perform well even on small sample
sizes (e.g. 30 observations) [18, 21, 32], even when the variables
significantly outnumber the observations [7]. Given that the ran-
dom forest offers superior prediction performance with previously
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Table 5: DBE prediction on all GPUs and GPUs which have
had a DBE in the past.

Method ROC AUC ROC AUC
(all GPUs) (previously offending GPUs)

Bernoulli Naïve Bayes 0.56 0.74
Gaussian Naïve Bayes 0.59 0.54

Complement Naïve Bayes 0.63 0.69
Multinomial Naïve Bayes 0.63 0.69

Logistic Regression 0.56 0.76
Linear Support Vector Machine 0.57 0.76

Random Forest 0.53 0.84
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Figure 12: Feature importance (Mean Decrease in Impurity)
in the random forest model.

offending GPUs, we turn to this model for insights. To this end,
we apply feature elimination strategies to remove unimportant fea-
tures which may detract from the accuracy of the model. We start
by ranking the features by their importance based on the associ-
ated mean decrease in impurity (MDI) in the trained model, see
Fig. 12. MDI quantifies the decrease in variance associated with
splitting on a feature (in particular, it is the 𝑅2 in a linear regres-
sion of the response on the output of one-level decision trees that
split on this feature [2]) and therefore serves as a measure of fea-
ture importance. Using MDI-based ranking, we iteratively build a
feature set by adding the most important features one at a time.
We start with a model using only core_temp_fluct_lifetime,
followed by a model using both core_temp_fluct_lifetime and
power_min_lifetime, etc. Interestingly, using only the first three
features yields a model with 0.9166 ROC AUC. We note that these
three features are lifetime aggregates, indicating that the predis-
position of a GPU is more informative for DBE prediction than its
short-term stressors.

Finding 10. Lifetime features are the most critical to the
predication of DBEs on susceptible GPUs, further supporting
the idea of importance of predisposition among DBE factors.

1 0 1 2 3 4 5 6
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Figure 13: Top-15 user-project combinations by estimated
DBE hazard coefficient. DBE-susceptible combinations (log-
transformed coefficient above 0 at 𝛼 = 0.05) are in bold.

5.3 Effect of workload patterns
To study the effects of HPC workloads on DBE susceptibility in
GPUs, we use an analogy from medical statistics in which the
GPU memory chips are patients and the jobs running on them
are their treatments. The patients arrive (have the respective job
started) and are observed until the moment of a snapshot, which
represents either an outcome (DBE) or an absence of such (normal
snapshot). Such a setup enables fitting a Cox regression model, a
common technique in survival analysis [9], to the snapshot data to
quantify the DBE susceptibility associated with various workload
types. Cox regression estimates the hazard coefficients that apply
to the baseline DBE likelihood to represent the risk associated
with running each HPC application (among those captured by our
snapshots). The applications where the left endpoint of the 95%
confidence interval for the respective hazard coefficient exceeds 1
(or 0 after the log-transformation) are considered DBE-susceptible.
Cox regression uses the time elapsed in a job before the snapshot,
which carries information about the absence of DBEs during this
period, to infer how the baseline DBE likelihood changes over time.
The type of HPC application was chosen as the only predictor
in the model because, unlike most of our variables, it stays fixed
throughout the observation period, which is less demanding to the
number of observations required to capture its effects. To reduce
the chance for the observed effects to be caused by predisposition
to DBEs of a particular GPU, we remove from the analysis the
snapshots of GPUs that have previously experienced a DBE.

As in Section 3, we circumvent the lack of information about HPC
application in the job scheduler records by using the project-user
combination as its proxy. Each project-user combination corre-
sponds to a group of snapshots taken within the jobs run by this
user and within this project. To reduce the likelihood of obtaining
spurious results, we remove the user-project combinations with 10
or fewer snapshots.

The resulting dataset contains 49 DBE and 20K normal snapshots,
corresponding to 270 distinct user-project combinations. After rep-
resenting these combinations with binary dummy variables, we fit
the model with the 𝑙2-penalization of 0.01 using its implementa-
tion from the Python library lifelines [11]. Our analysis identifies
5 DBE-susceptible user-project combinations, whose jobs have a
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higher chance of encountering a DBE per unit of time than a ran-
domly chosen job at the significance level of 𝛼 = 0.05. Their 95%
confidence intervals for the log-transformed hazard coefficients,
along with the confidence intervals for the next 10 user-project
combinations by estimated DBE hazard, are shown on Figure 13.

The 5 DBE-susceptible combinatons altogether correspond to
134 snapshots (0.7% of the dataset), of which 6 were DBE snapshots
(12.2% of the DBE subset). Based on the names of respective jobs,
their projects, and information provided by some of their users, we
identify the types of HPC applications corresponding to 4 out of 5
DBE-susceptible combinations.

Finding 11. Out of 5 identified HPC applications on Summit
with statistically significant DBE susceptibility, at least 4 use
mixed-precision arithmetic.

6 RELATEDWORK
A number of previous field studies have employed statistical ap-
proaches to understand memory corruption, including in GPUs.
[43] and [41] identified the effects of vendor and cosmic ray expo-
sure on the bit flip rate in DDR3 DRAM, and [19] demonstrated
that memory architecture and workload patterns are also factors
of significance. Recent works have studied the memory error in
DDR4 memory, in particular the error rate variance by vendor, the
distribution of single-bit vs multiple-bit errors [6], and the effects
of temperature and unit position within the HPC system [14].

Log sequence analysis has been used to predict systems fail-
ures including GPU errors [10]. The physical location for survival
analysis of GPUs in large scale HPC facilities is also identified as im-
portant [28]. Large system characterization studies have focused on
the exploration of events that could lead to single-bit errors [44, 45]
and have identified features such as temperature, power, workload,
and location to drive machine learning models for prediction [22].

However, none of these works correlates bit flips in GPU mem-
ory with GPU utilization patterns at multi-scale time resolution.
While GPU temperature within 1 hour before a DBE is considered
in [22], its analysis is performed manually and lacks certainty in
establishing the connection between high temperature and memory
corruption. This is complemented by our work that quantifies the
confidence in such a connection and contrasts it with a significantly
stronger association between power consumption and DBEs. The
approaches of error classification and survival analysis taken in
our paper are similar to SBE data in [23, 24] and [28], but use sig-
nificantly different features, in particular telemetry aggregates at
fine-grained time resolution enabled by DBE data. Unlike [23, 24],
we focus on using interpretable classification models similar to
those used to understand for deep characterization of the reasons
that lead to DBEs. In contrast to [28], our survival analysis identifies
HPC applications associated with memory corruption. In addition,
the above large-scale studies focus on GDDR5 units, whereas our
findings pertain to more contemporary GPUs with high-bandwith
memory.

Beyond system-focused studies that characterize the conditions
that trigger GPU errors, another line of research focuses on how to
characterize GPU application resilience in the presence of single-bit

and multi-bit faults. Fault injection tools facilitate this characteriza-
tion [13, 15, 25, 34, 46, 47] and they operate by injecting faults at
the software level, microarchitecture level, or into low-level SASS
instructions. Application resilience to DBEs is the subject of many
works [33, 49] and has focused on the sensitivity of application
resilience to input parameters [31, 50] and software hardening tech-
niques to improve application resilience[8, 48].

7 DISCUSSION AND CONCLUSIONS
Our analyses identified a number of operation patterns in Nvidia
HBM2 GPUs associated with the increased risk of DBEs, such as
physical placement on a node, stresses from HPC operations, and
individual predisposition. The affected GPUs seemed to be more
susceptible to DBEs even if all their compromised memory pages
were successfully replaced with spare ones. Due to the seemingly
low-level physical nature of the patterns reported in Findings 3,
5, 6, 8, 9, 10, and 11, we believe that they are likely to manifest in
other HBM2 GPUs.

The rarity of DBEs together with the unavailability of temporal
SBE data for Summit has been a significant impediment to this study.
At the same time, the knowledge of precise timing of DBE detection
together with the scale of analyzed data have enabled fine-grained
analyses resulting in novel findings about GPU reliability.

Another limitation is the lack of control for the intensity of mem-
ory operations in a job, caused by unavailability of this information.
All other things being equal, a job using more GPU memory will
have a higher likelihood of catching a DBE due to invoking a larger
number of ECC checks. If known, the amount of GPU memory
used by a job should be used to scale down (up) the weight of indi-
vidual DBE (normal) observations to amplify the effects of other,
less-understood factors behind the DBE occurrence.

Given the limited amount of information contained in our data
and correlations between some of the discovered patterns, the ques-
tion about the root cause(s) of DBEs remains open. Establishing
causality in GPUmemory corruption would require more data (both
in the number of observations and the amount of information about
them) or a controlled testing environment.
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